
Lecture 9
Analysis of Algorithms

Measuring Algorithm Efficiency

Lecture Outline
 What is an Algorithm?

 What is Analysis of Algorithms?

 How to analyze an algorithm

 Big-O notation

 Example Analyses

[CS1020E AY1617S1 Lecture 9] 2

You are expected to know…
 Proof by induction

 Operations on logarithm function

 Arithmetic and geometric progressions
 Their sums
 See L9 – useful_formulas.pdf for some of these

 Linear, quadratic, cubic, polynomial functions

 ceiling, floor, absolute value

[CS1020E AY1617S1 Lecture 9] 3

[CS1020E AY1617S1 Lecture 9] 4

Algorithm and Analysis
 Algorithm
 A step-by-step procedure for solving a problem

 Analysis of Algorithm
 To evaluate rigorously the resources (time and

space) needed by an algorithm and represent the
result of the evaluation with a formula

 For this module, we focus more on time
requirement in our analysis

 The time requirement of an algorithm is also called
the time complexity of the algorithm

Measure Actual Running Time?
 We can measure the actual running time of a

program
 Use wall clock time or insert timing code into

program

 However, actual running time is not
meaningful when comparing two algorithms
 Coded in different languages
 Using different data sets
 Running on different computers

[CS1020E AY1617S1 Lecture 9] 5

Counting Operations
 Instead of measuring the actual timing, we

count the number of operations
 Operations: arithmetic, assignment, comparison, etc.

 Counting an algorithm’s operations is a way to
assess its efficiency
 An algorithm’s execution time is related to the

number of operations it requires

[CS1020E AY1617S1 Lecture 9] 6

Example: Counting Operations
 How many operations are required?

[CS1020E AY1617S1 Lecture 9] 7

for (int i = 1; i <= n; i++) {
perform 100 operations; // A
for (int j = 1; j <= n; j++) {

perform 2 operations; // B
}

}

Total Ops = A + B

n

i

n

j

n

i 1 11
)2(100

n

i
nn

1
2100 22100 nn nn 1002 2

Example: Counting Operations
 Knowing the number of operations required

by the algorithm, we can state that
 Algorithm X takes 2n2 + 100n operations to solve

problem of size n

 If the time t needed for one operation is
known, then we can state
 Algorithm X takes (2n2 + 100n)t time units

[CS1020E AY1617S1 Lecture 9] 8

Example: Counting Operations
 However, time t is directly dependent on the

factors mentioned earlier
 e.g. different languages, compilers and computers

 Instead of tying the analysis to actual time t,
we can state
 Algorithm X takes time that is proportional to

2n2 + 100n for solving problem of size n

[CS1020E AY1617S1 Lecture 9] 9

Approximation of Analysis Results
 Suppose the time complexity of

 Algorithm A is 3n2 + 2n + log n + 1/(4n)
 Algorithm B is 0.39n3 + n

 Intuitively, we know Algorithm A will outperform B
 When solving larger problem, i.e. larger n

 The dominating term 3n2 and 0.39n3 can tell us
approximately how the algorithms perform

 The terms n2 and n3 are even simpler and preferred

 These terms can be obtained through asymptotic
analysis

[CS1020E AY1617S1 Lecture 9] 10

Asymptotic Analysis
 Asymptotic analysis is an analysis of

algorithms that focuses on
 Analyzing problems of large input size
 Consider only the leading term of the formula
 Ignore the coefficient of the leading term

[CS1020E AY1617S1 Lecture 9] 11

Why Choose Leading Term?
 Lower order terms contribute lesser to the

overall cost as the input grows larger

 Example
 f(n) = 2n2 + 100n

 f(1000) = 2(1000)2 + 100(1000)
= 2,000,000 + 100,000

 f(100000) = 2(100000)2 + 100(100000)
= 20,000,000,000 + 10,000,000

 Hence, lower order terms can be ignored

[CS1020E AY1617S1 Lecture 9] 12

Examples: Leading Terms
 a(n) = ½ n + 4
 Leading term: ½ n

 b(n) = 240n + 0.001n2

 Leading term: 0.001n2

 c(n) = n lg(n) + lg(n) + n lg(lg(n))
 Leading term: n lg(n)
 Note that lg(n) = log2(n)

[CS1020E AY1617S1 Lecture 9] 13

Why Ignore Coefficient of Leading Term?

 Suppose two algorithms have 2n2 and 30n2 as
the leading terms, respectively

 Although actual time will be different due to the
different constants, the growth rates of the
running time are the same

 Compare with another algorithm with leading
term of n3, the difference in growth rate is a
much more dominating factor

 Hence, we can drop the coefficient of leading
term when studying algorithm complexity

[CS1020E AY1617S1 Lecture 9] 14

Upper Bound: The Big-O Notation
 If algorithm A requires time proportional

to f(n)
 Algorithm A is of the order of f(n)
 Denoted as Algorithm A is O(f(n))
 f(n) is the growth rate function for Algorithm A

[CS1020E AY1617S1 Lecture 9] 15

The Big-O Notation
 Formal definition
 Algorithm A is of O(f(n)) if there exist a constant k,

and a positive integer n0 such that Algorithm A
requires no more than k * f(n) time units to solve a
problem of size n >= n0

[CS1020E AY1617S1 Lecture 9] 16

k*f(n)

Algorithm A

n0

f(n)

Problem Size

Time

The Big-O Notation
 When problem size is larger than n0, Algorithm A is

bounded from above by k * f(n)
 Observations

 n0 and k are not unique
 There are many possible f(n)

[CS1020E AY1617S1 Lecture 9] 17

k*f(n)

Algorithm A

n0

f(n)

Problem Size

Time

Example: Finding n0 and k
 Given complexity of Algorithm A is 2n2 + 100n

 Claim: Algorithm A is of O(n2)

 Solution
 2n2 + 100n < 2n2 + n2 = 3n2 whenever n >100
 Set the constants to be k = 3 and n0 = 100
 By definition, we say Algorithm A is O(n2)

 Questions
 Can we say A is O(2n2) or O(3n2)?
 Can we say A is O(n3)?

[CS1020E AY1617S1 Lecture 9] 18

Growth Terms
 In asymptotic analysis, a formula can be simplified

to a single term with coefficient 1 (how?)

 Such a term is called a growth term (rate of
growth, order of growth, order of magnitude)

 The most common growth terms can be ordered as
follows (note that many others are not shown)

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n) < …

[CS1020E AY1617S1 Lecture 9] 19

“fastest” “slowest”

 “log” = log2
 In big-O, log functions of different bases are all the same (why?)

Common Growth Rates
 O(1) — constant time

 Independent of n
 O(n) — linear time

 Grows as the same rate of n
 E.g. double input size double execution time

 O(n2) — quadratic time
 Increases rapidly w.r.t. n
 E.g. double input size quadruple execution time

 O(n3) — cubic time
 Increases even more rapidly w.r.t. n
 E.g. double input size 8 * execution time

 O(2n) — exponential time
 Increases very very rapidly w.r.t. n

[CS1020E AY1617S1 Lecture 9] 20

Example: Exponential-Time Algorithm
 Suppose we have a problem that, for an input

consisting of n items, can be solved by going
through 2n cases

 We use a supercomputer, that analyses 200
million cases per second
 Input with 15 items — 163 microseconds
 Input with 30 items — 5.36 seconds
 Input with 50 items — more than two months
 Input with 80 items — 191 million years

[CS1020E AY1617S1 Lecture 9] 21

Example: Quadratic-Time Algorithm
 Suppose solving the same problem with another

algorithm will use 300n2 clock cycles on a Handheld
PC, running at 33 MHz
 Input with 15 items — 2 milliseconds
 Input with 30 items — 8 milliseconds
 Input with 50 items — 22 milliseconds
 Input with 80 items — 58 milliseconds

 Therefore, to speed up program, don't simply rely on
the raw power of a computer
 Very important to use an efficient algorithm

[CS1020E AY1617S1 Lecture 9] 22

Comparing Growth Rates

[CS1020E AY1617S1 Lecture 9] 23

Comparing Growth Rates

[CS1020E AY1617S1 Lecture 9] 24

How to Find Complexity?
 Some rules of thumb

 Basically just count the number of statements executed
 If there are only a small number of simple statements in a

program — O(1)
 If there is a ‘for’ loop dictated by a loop index that goes up

to n — O(n)
 If there is a nested ‘for’ loop with outer one controlled by n

and the inner one controlled by m — O(n*m)
 For a loop with a range of values n, and each iteration

reduces the range by a fixed constant fraction (eg: ½)
— O(log n)

 For a recursive method, each call is usually O(1). So
 If n calls are made — O(n)
 If n log n calls are made — O(n log n)

[CS1020E AY1617S1 Lecture 9] 25

Example: Finding Complexity (1/2)
 What is the complexity of the following code fragment?

 It is clear that sum is incremented only when

i = 1, 2, 4, 8, …, 2k where k = log2 n

There are k + 1 iterations.
So the complexity is O(k) or O(log n)

[CS1020E AY1617S1 Lecture 9] 26

int sum = 0;
for (int i = 1; i < n; i = i*2) {
sum++;

}

Example: Finding Complexity (2/2)
 What is the complexity of the following code fragment?

 For simplicity, let’s assume that n is some power of 3

 f(n) = 1 + 3 + 9 + 27 + … + 3(log
3

n)

= 1 + 3 + … + n/9 + n/3 + n
= n + n/3 + n/9 + … + 3 + 1
= n * (1 + 1/3 + 1/9 + …)
≤ n * (3/2)
= 3n/2
= O(n)

[CS1020E AY1617S1 Lecture 9] 27

int sum = 0;
for (int i = 1; i <= n; i = i*3)

for (int j = 1; j <= i; j++)
sum++;

Analysis 1: Tower of Hanoi
 Number of moves made by the algorithm is 2n − 1

 Prove it!
 Hints: f(1)=1, f(n)=f(n-1) + 1 + f(n-1), and prove by

induction

 Assume each move takes c time, then
f(n) = c(2n − 1) = O(2n)

 The Tower of Hanoi algorithm is an exponential
time algorithm

[CS1020E AY1617S1 Lecture 9] 28

Analysis 2: Sequential Search
 Check whether an item x is in an unsorted

array a[]
 If found, it returns position of x in array
 If not found, it returns -1

[CS1020E AY1617S1 Lecture 9] 29

public int seqSearch(int a[], int len, int x) {
for (int i = 0; i < len; i++) {

if (a[i] == x)
return i;

}
return -1;

}

Analysis 2: Sequential Search
 Time spent in each iteration through the loop is at

most some constant c1

 Time spent outside the loop is at most some
constant c2

 Maximum number of iterations is n
 Hence, the asymptotic upper bound is

c1n + c2 = O(n)
 Observation

 In general, a loop of n iterations will lead to O(n) growth rate
 This is an example of Worst Case Analysis

[CS1020E AY1617S1 Lecture 9] 30

Analysis 3: Binary Search
 Important characteristics
 Requires array to be sorted
 Maintain sub-array where x might be located
 Repeatedly compare x with m, the middle of

current sub-array
 If x = m, found it!
 If x > m, eliminate m and positions before m
 If x < m, eliminate m and positions after m

 Iterative and recursive implementations

[CS1020E AY1617S1 Lecture 9] 31

[CS1020E AY1617S1 Lecture 9] 32

Binary Search (Recursive)
int binarySearch(int a[], int x, int low, int high) {
if (low > high) // Base Case 1: item not found
return -1;

int mid = (low+high) / 2;

if (x > a[mid])
return binarySearch(a, x, mid+1, high);

else if (x < a[mid])
return binarySearch(a, x, low, mid–1);

else
return mid; // Base Case 2: item found

}

[CS1020E AY1617S1 Lecture 9] 33

Binary Search (Iterative)
int binSearch(int a[], int len, int x) {
int mid, low = 0;
int high = len-1;

while (low <= high) {
mid = (low+high) / 2;
if (x == a[mid])
return mid;

else if (x > a[mid])
low = mid+1;

else
high = mid-1;

}
return -1; // item not found

}

Analysis 3: Binary Search (Iterative)
 Time spent outside the loop is at most c1

 Time spent in each iteration of the loop is at
most c2

 For inputs of size n, if the program goes through
at most f(n) iterations, then the complexity is

c1 + c2f(n) or O(f(n))

 i.e. the complexity is decided by the number of
iterations (loops)

[CS1020E AY1617S1 Lecture 9] 34

Analysis 3: Finding f(n)
 At any point during binary search, part of array is “alive”

(might contain x)

 Each iteration of loop eliminates at least half of
previously “alive” elements

 At the beginning, all n elements are “alive”, and after
 One iteration, at most n/2 are left, or alive

 Two iterations, at most (n/2)/2 = n/4 = n/22 are left

 Three iterations, at most (n/4)/2 = n/8 = n/23 are left

 . . .

 k iterations, at most n/2k are left

 At the final iteration, at most 1 element is left

[CS1020E AY1617S1 Lecture 9] 35

Analysis 3: Finding f(n)
 In the worst case, we have to search all the way up

to the last iteration k with only one element left

 We have
n/2k = 1 2k = n k = log2(n) = lg(n)

 Hence, the binary search algorithm takes O(f(n)), or
O(lg(n)) time

 Observation
 In general, when the domain of interest is reduced by a

fraction for each iteration of a loop, then it will lead to
O(log n) growth rate

[CS1020E AY1617S1 Lecture 9] 36

Analysis of Different Cases
 For an algorithm, three different cases of analysis

 Worst-Case Analysis
 Look at the worst possible scenario

 Best-Case Analysis
 Look at the ideal case
 Usually not useful

 Average-Case Analysis
 Probability distribution should be known
 Hardest/impossible to analyze

 Example: Sequential Search
 Worst-Case: target item at the tail of array
 Best-Case: target item at the head of array
 Average-Case: target item can be anywhere

[CS1020E AY1617S1 Lecture 9] 37

Summary
 Algorithm Definition

 Algorithm Analysis
 Counting operations
 Asymptotic Analysis
 Big-O notation (Upper-Bound)

 Three cases of analysis
 Best-case
 Worst-case
 Average-case

[CS1020E AY1617S1 Lecture 9] 38

