Lecture 9 Analysis of Algorithms

Measuring Algorithm Efficiency

Lecture Outline

- What is an Algorithm?
- What is Analysis of Algorithms?
- How to analyze an algorithm
- Big-O notation
- Example Analyses

You are expected to know...

- Proof by induction
- Operations on logarithm function
- Arithmetic and geometric progressions
 - Their sums
 - See L9 useful_formulas.pdf for some of these
- Linear, quadratic, cubic, polynomial functions
- ceiling, floor, absolute value

Algorithm and Analysis

Algorithm

A step-by-step procedure for solving a problem

- Analysis of Algorithm
 - To evaluate rigorously the resources (time and space) needed by an algorithm and represent the result of the evaluation with a formula
 - For this module, we focus more on time requirement in our analysis
 - The time requirement of an algorithm is also called the time complexity of the algorithm

Measure Actual Running Time?

- We can measure the actual running time of a program
 - Use wall clock time or insert timing code into program
- However, actual running time is not meaningful when comparing two algorithms
 - Coded in different languages
 - Using different data sets
 - Running on different computers

Counting Operations

- Instead of measuring the actual timing, we count the number of **operations**
 - Operations: arithmetic, assignment, comparison, etc.
- Counting an algorithm's operations is a way to assess its efficiency
 - An algorithm's execution time is related to the number of operations it requires

Example: Counting Operations

How many operations are required?

Total Ops = A + B =
$$\sum_{i=1}^{n} 100 + \sum_{i=1}^{n} (\sum_{j=1}^{n} 2)$$

= $100n + \sum_{i=1}^{n} 2n$ = $100n + 2n^2$ = $2n^2 + 100n$

Example: Counting Operations

- Knowing the number of operations required by the algorithm, we can state that
 - Algorithm X takes 2n² + 100n operations to solve problem of size n
- If the time t needed for one operation is known, then we can state
 - Algorithm X takes $(2n^2 + 100n)t$ time units

Example: Counting Operations

- However, time t is directly dependent on the factors mentioned earlier
 - e.g. different languages, compilers and computers
- Instead of tying the analysis to actual time t, we can state
 - Algorithm X takes time that is proportional to $2n^2 + 100n$ for solving problem of size n

Approximation of Analysis Results

- Suppose the time complexity of
 - Algorithm *A* is $3n^2 + 2n + \log n + 1/(4n)$
 - Algorithm *B* is **0.39***n*³ + *n*
- Intuitively, we know Algorithm A will outperform B
 - When solving larger problem, i.e. larger n
- The dominating term 3n² and 0.39n³ can tell us approximately how the algorithms perform
- The terms n² and n³ are even simpler and preferred
- These terms can be obtained through asymptotic analysis

Asymptotic Analysis

- Asymptotic analysis is an analysis of algorithms that focuses on
 - Analyzing problems of large input size
 - Consider only the leading term of the formula
 - Ignore the coefficient of the leading term

Why Choose Leading Term?

- Lower order terms contribute lesser to the overall cost as the input grows larger
- Example
 - $f(n) = 2n^2 + 100n$
 - *f*(1000)

- $= 2(1000)^2 + 100(1000)$
- = 2,000,000 + 100,000
- $f(100000) = 2(100000)^2 + 100(100000) \\= 20,000,000,000 + 10,000,000$
- Hence, lower order terms can be ignored

Examples: Leading Terms

- $a(n) = \frac{1}{2}n + 4$
 - Leading term: ¹/₂ n
- $b(n) = 240n + 0.001n^2$
 - Leading term: 0.001n²
- $c(n) = n \lg(n) + \lg(n) + n \lg(\lg(n))$
 - Leading term: n lg(n)
 - Note that $lg(n) = log_2(n)$

Why Ignore Coefficient of Leading Term?

- Suppose two algorithms have 2n² and 30n² as the leading terms, respectively
- Although actual time will be different due to the different constants, the growth rates of the running time are the same
- Compare with another algorithm with leading term of n³, the difference in growth rate is a much more dominating factor
- Hence, we can drop the coefficient of leading term when studying algorithm complexity

Upper Bound: The Big-O Notation

- If algorithm A requires time proportional to f(n)
 - Algorithm A is of the order of f(n)
 - Denoted as Algorithm A is O(f(n))
 - f(n) is the growth rate function for Algorithm A

The Big-O Notation

- Formal definition
 - Algorithm A is of O(f(n)) if there exist a constant k, and a positive integer n₀ such that Algorithm A requires no more than k * f(n) time units to solve a problem of size n >= n₀

The Big-O Notation

- When problem size is larger than n₀, Algorithm A is bounded from above by k * f(n)
- Observations
 - n₀ and k are not unique
 - There are many possible f(n)

Example: Finding n_0 and k

- Given complexity of Algorithm A is 2n² + 100n
- Claim: Algorithm A is of O(n²)
- Solution
 - $2n^2 + 100n < 2n^2 + n^2 = 3n^2$ whenever n > 100
 - Set the constants to be k = 3 and $n_0 = 100$
 - By definition, we say Algorithm A is O(n²)
- Questions
 - Can we say A is $O(2n^2)$ or $O(3n^2)$?
 - Can we say A is O(n³)?

Growth Terms

- In asymptotic analysis, a formula can be simplified to a single term with coefficient 1 (how?)
- Such a term is called a growth term (rate of growth, order of growth, order of magnitude)
- The most common growth terms can be ordered as follows (note that many others are not shown)

 $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < ...$ "fastest"

- "log" = log₂
- In big-O, log functions of different bases are all the same (why?)

Common Growth Rates

O(1) — constant time

Independent of n

O(n) — linear time

- Grows as the same rate of n
- E.g. double input size → double execution time

O(n²) — quadratic time

- Increases rapidly w.r.t. n
- E.g. double input size → quadruple execution time

• $O(n^3)$ — cubic time

- Increases even more rapidly w.r.t. n
- E.g. double input size → 8 * execution time

O(2ⁿ) — exponential time

Increases very very rapidly w.r.t. n

Example: Exponential-Time Algorithm

- Suppose we have a problem that, for an input consisting of *n* items, can be solved by going through 2ⁿ cases
- We use a supercomputer, that analyses 200 million cases per second
 - Input with 15 items 163 microseconds
 - Input with 30 items 5.36 seconds
 - Input with 50 items more than two months
 - Input with 80 items 191 million years

Example: Quadratic-Time Algorithm

- Suppose solving the same problem with another algorithm will use 300n² clock cycles on a Handheld PC, running at 33 MHz
 - Input with 15 items 2 milliseconds
 - Input with 30 items 8 milliseconds
 - Input with 50 items 22 milliseconds
 - Input with 80 items 58 milliseconds
- Therefore, to speed up program, don't simply rely on the raw power of a computer
 - Very important to use an efficient algorithm

Comparing Growth Rates

(a)

				n		
)
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	10 ⁵	10 ⁶
n *log ₂ n	30	664	9,965	10 ⁵	10 ⁶	10 ⁷
n ²	10 ²	104	10 ⁶	10 ⁸	10 ¹⁰	10 ¹²
n ³	10 ³	10 ⁶	10 ⁹	1012	10 ¹⁵	10 ¹⁸
2 ⁿ	10 ³	10 ³⁰	10 ³⁰	1 10 ^{3,01}	10 ^{30,}	¹⁰³ 10 ^{301,030}

Comparing Growth Rates (b) ₁n ³ n^2 2ⁿ 100 n *log₂n Value of growth-rate function 75 50 25 n log₂n 1 5 10 15 20 n

How to Find Complexity?

- Some rules of thumb
 - Basically just count the number of statements executed
 - If there are only a small number of simple statements in a program O(1)
 - If there is a 'for' loop dictated by a loop index that goes up to n O(n)
 - If there is a nested 'for' loop with outer one controlled by n and the inner one controlled by m — O(n*m)
 - For a loop with a range of values *n*, and each iteration reduces the range by a fixed constant fraction (eg: ½)
 O(log *n*)
 - For a recursive method, each call is usually O(1). So
 - If n calls are made O(n)
 - If n log n calls are made O(n log n)

Example: Finding Complexity (1/2)

What is the complexity of the following code fragment?

```
int sum = 0;
for (int i = 1; i < n; i = i*2) {
    sum++;
}</pre>
```

It is clear that sum is incremented only when

There are k + 1 iterations. So the complexity is O(k) or $O(\log n)$

Example: Finding Complexity (2/2)

- What is the complexity of the following code fragment?
 - For simplicity, let's assume that *n* is some power of 3

•
$$f(n) = 1 + 3 + 9 + 27 + \dots + 3^{(\log_3 n)}$$

= $1 + 3 + \dots + n/9 + n/3 + n$
= $n + n/3 + n/9 + \dots + 3 + 1$
= $n^* (1 + 1/3 + 1/9 + \dots)$
 $\leq n^* (3/2)$
= $3n/2$
= $O(n)$

- [CS1020E AY1617S1 Lecture 9]

Analysis 1: Tower of Hanoi

- Number of moves made by the algorithm is 2ⁿ 1
 - Prove it!
 - Hints: f(1)=1, f(n)=f(n-1) + 1 + f(n-1), and prove by induction
- Assume each move takes *c* time, then $f(n) = c(2^n - 1) = O(2^n)$

The Tower of Hanoi algorithm is an exponential time algorithm

Analysis 2: Sequential Search

- Check whether an item x is in an unsorted array a[]
 - If found, it returns position of x in array
 - If not found, it returns -1

```
public int seqSearch(int a[], int len, int x) {
   for (int i = 0; i < len; i++) {
      if (a[i] == x)
        return i;
    }
   return -1;
}</pre>
```

Analysis 2: Sequential Search

- Time spent in each iteration through the loop is at most some constant c₁
- Time spent outside the loop is at most some constant c₂
- Maximum number of iterations is n
- Hence, the asymptotic upper bound is $c_1 n + c_2 = O(n)$
- Observation
 - In general, a loop of n iterations will lead to O(n) growth rate
 - This is an example of Worst Case Analysis

Analysis 3: Binary Search

- Important characteristics
 - Requires array to be sorted
 - Maintain sub-array where x might be located
 - Repeatedly compare x with m, the middle of current sub-array
 - If x = m, found it!
 - If x > m, eliminate *m* and positions before *m*
 - If x < m, eliminate m and positions after m</p>
- Iterative and recursive implementations

Binary Search (Recursive)

```
int binarySearch(int a[], int x, int low, int high) {
  if (low > high) // Base Case 1: item not found
    return -1;
  int mid = (low+high) / 2;
  if (x > a[mid])
    return binarySearch(a, x, mid+1, high);
 else if (x < a[mid])</pre>
    return binarySearch(a, x, low, mid-1);
 else
   return mid; // Base Case 2: item found
```

Binary Search (Iterative)

```
int binSearch(int a[], int len, int x) {
  int mid, low = 0;
  int high = len-1;
 while (low <= high) {</pre>
    mid = (low+high) / 2;
    if (x == a[mid])
      return mid;
    else if (x > a[mid])
      low = mid+1;
    else
      high = mid-1;
  return -1; // item not found
```

Analysis 3: Binary Search (Iterative)

- Time spent outside the loop is at most C₁
- Time spent in each iteration of the loop is at most c₂
- For inputs of size n, if the program goes through at most f(n) iterations, then the complexity is

 $c_1 + c_2 f(n)$ or O(f(n))

 i.e. the complexity is decided by the number of iterations (loops)

Analysis 3: Finding **f**(**n**)

- At any point during binary search, part of array is "alive" (might contain x)
- Each iteration of loop eliminates at least half of previously "alive" elements
- At the beginning, all *n* elements are "alive", and after
 - One iteration, at most *n*/2 are left, or alive
 - Two iterations, at most $(n/2)/2 = n/4 = n/2^2$ are left
 - Three iterations, at most $(n/4)/2 = n/8 = n/2^3$ are left
 - • •
 - k iterations, at most n/2^k are left
 - At the final iteration, at most 1 element is left

Analysis 3: Finding **f**(**n**)

- In the worst case, we have to search all the way up to the last iteration k with only one element left
- We have

 $n/2^{k} = 1 \implies 2^{k} = n \implies k = \log_{2}(n) = \lg(n)$

- Hence, the binary search algorithm takes O(f(n)), or O(lg(n)) time
- Observation
 - In general, when the domain of interest is reduced by a fraction for each iteration of a loop, then it will lead to O(log *n*) growth rate

Analysis of Different Cases

- For an algorithm, three different cases of analysis
 - Worst-Case Analysis
 - Look at the worst possible scenario
 - Best-Case Analysis
 - Look at the ideal case
 - Usually not useful
 - Average-Case Analysis
 - Probability distribution should be known
 - Hardest/impossible to analyze
- Example: Sequential Search
 - Worst-Case: target item at the tail of array
 - Best-Case: target item at the head of array
 - Average-Case: target item can be anywhere

Summary

- Algorithm Definition
- Algorithm Analysis
 - Counting operations
 - Asymptotic Analysis
 - Big-O notation (Upper-Bound)
- Three cases of analysis
 - Best-case
 - Worst-case
 - Average-case